

Endofullerenes

DOI: 10.1002/anie.201100432

Covalently Linked Porphyrin–La@C₈₂ Hybrids: Structural Elucidation and Investigation of Intramolecular Interactions**

Lai Feng, Zdenek Slanina, Satoru Sato, Kenji Yoza, Takahiro Tsuchiya, Naomi Mizorogi, Takeshi Akasaka,* Shigeru Nagase,* Nazario Martín, and Dirk M. Guldi

Dedicated to Professor Luis Echegoyen on the occasion of his 60th birthday

The study of covalent and non-covalent photoactive hybrids continues to be of interest for developing photosynthetic and optoelectronic applications. To this end, C_{60} is recognized as an important building block owing to its rich redox properties and low reorganization energy in electron-transfer reactions. Hybrids of C_{60} with various photoactive and electroactive units have been studied comprehensively in the context of light harvesting, unidirectional energy transfer, and electron transfer. Recently, the unique structures and properties of endohedral metallofullerenes (EMFs), such as $M_3N@C_{80}$ (M=Sc, Lu) and $M_2@C_{80}$ (M=La, Ce), has led to their integration into photoactive hybrids in which improved or switchable inter- or intramolecular electron transfer events were realized. $^{[3,4]}$

Another widely studied EMF is La@ $C_{2\nu}$ -C₈₂, which features a huge anionic π surface and an open-shell structure. Importantly, in comparison to C₆₀ and the above-mentioned

[*] Dr. L. Feng, Dr. Z. Slanina, Dr. S. Sato, Dr. T. Tsuchiya, Dr. N. Mizorogi, Prof. Dr. T. Akasaka

Centre for Tsukuba Advanced Research Alliance

University of Tsukuba, Ibaraki 305-8577 (Japan)

Fax: (+81) 298-53-6409

E-mail: akasaka@tara.tsukuba.ac.jp

Dr. K. Yoza

Bruker, Kanagawa (Japan)

Prof. Dr. S. Nagase

Department of Theoretical and Computational Molecular Science

Institute for Molecular Science

Okazaki, Aichi 444-8585 (Japan)

E-mail: nagase@ims.ac.jp

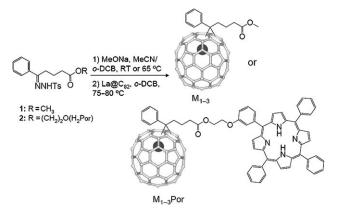
Prof. Dr. N. Martín

Departamento de Química Orgánica

Universidad Complutense, Madrid (Spain)

Prof. Dr. D. M. Guldi

Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Universität Erlangen-Nürnberg (Germany)


[**] This work was supported in part by a Grant-in-Aid for Scientific research on Innovative Areas (No. 20108001, "pi-Space"), a Grant-in-Aid for Scientific Research (A) (No. 20245006), The Next Generation Super Computing Project (Nanoscience Project), Nanotechnology Support Project, and Grants-in-Aid for Scientific research on Priority Area (Nos. 20036008, 20038007), and Specially Promoted Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Technology of Japan and The Strategic Japanese–Spanish Cooperative Program is funded by JST and MICINN.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201100432.

EMFs, La@C₈₂ has more active redox properties, a broader absorption spectrum, a smaller band gap, and lower-lying excited state. $^{\left[5,6\right]}$ In this regard, incorporating La@C $_{82}$ into multichromophoric systems is certainly worthy of consideration. In fact, recent efforts have exemplified the construction of supramolecular arrays of La@C82 and chromophores, such as porphyrins.^[7] However, covalently linked hybrids remain unexplored. A likely rationale includes the presence of multiple isomeric products that are formed in most reactions.[8] Herein, we present three isomeric covalently linked 5,10,15,20-tetraphenylporphyrin (H₂Por)–La@C₈₂ hybrids, including their synthesis, electrochemistry, and spectroscopic and computational studies. Compared with non-covalent hybrids, [7b] the presence of a flexible linker between the two subunits is evidently crucial. It facilitates π - π attractions between the two subunits and therefore enhances intramolecular electronic interactions even in the ground state. Remarkable fluorescence quenching in all covalently linked hybrids is evidence of the occurrence of photoinduced intramolecular communication.

The synthesis started with a thermal reaction (Scheme 1) involving La@C $_{82}$ and a typical diazo precursor **1** that was used to synthesize the [6,6]-phenyl-C $_{61}$ butyric acid methyl ester (PCBM). Following a multistage separation using HPLC, three isomeric monoadducts (M_1 , M_2 , and M_3) were ultimately isolated as major products. Substitution of **1** by another precursor, **2**, led to the synthesis of H_2 Por–La@C $_{82}$ hybrids. In a similar way, three isomeric forms (M_1 Por, M_2 Por, and M_3 Por) were isolated as major products with lower yields.

Scheme 1. Synthesis of M_{1-3} and M_{1-3} Por. Ts = toluene-4-sulfonyl, o-DCB = 1,2-dichlorobenzene.

Communications

All compounds were characterized using HPLC, MALDI-MS, EPR, and UV/Vis-NIR spectroscopy. [9] The HPLC profiles of all the purified samples are shown in the Supporting Information, Figures S1, S2. The MS spectra (Supporting Information, Figures S3, S4) display a dominant molecular ion peak either at m/z 1314 for M_{1-3} or at m/z 1957 for M₁₋₃Por. Agreement between the observed and the calculated isotopic distributions confirms their compositions. The absence of other fragment peaks suggests their high stability under the laser decomposition conditions. Unambiguous structural determination was achieved by means of crystallography. As shown in Figure 1, M₃ is a [6,6]-open adduct.^[12] The C2-C3 bond is cleaved because of the [1+2]-addition, and the La atom is close to the addition site, with 100% occupancy. The addition pattern and the addition site are identical to those proposed for La@C₈₂Ad-II (Ad = adamantylidene, minor isomer),^[13] probably indicating their similar formation pathway, that is, carbene addition.

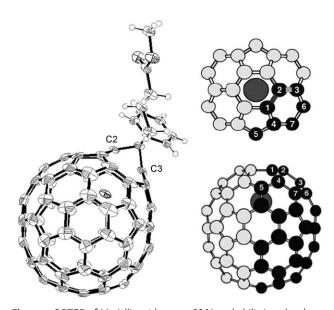
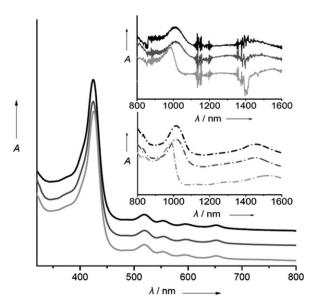



Figure 1. ORTEP of $\rm M_3$ (ellipsoids set at 50% probability) and orthogonal views of the addition site.

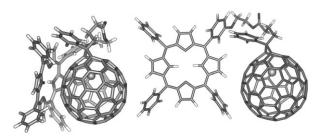
The absorption spectra of M_{1-3} and M_{1-3} Por are portrayed in Figure 2 (see the Supporting Information, Figure S5 for visible absorptions of M_{1-3}). As for M_3 , the two NIR absorptions at around 986 and 1525 nm are fully consistent with those seen for La@C₈₂Ad-II,^[13] reflecting their isostructural nature. For M_1 and M_2 , they both show absorptions at 1010 and 1456 nm; the form of these absorptions resemble those of La@C₈₂Ad-I (major isomer).^[14] Considering that the electronic spectra of La@C₈₂ derivatives usually reflect the fingerprints of their π -system topology, it is reasonable to assume the isostructural nature of the respective adducts; that is, the same addition pattern and the same addition site (C1 and C2). Consequently, M_1 and M_2 might be stereoisomers of the 1,2-adduct that possesses two chiral centers (that is, C1 and the spiro carbon).

Figure 2. UV/Vis absorption spectra of M_{1-3} Por hybrids (M_1 black, M_2 dark gray, M_3 light gray lines) at similar concentrations in toluene. Inset: NIR absorption spectra of M_{1-3} Por hybrids (upper, lines) and M_{1-3} references (lower, dashed lines).

Each hybrid $(M_{1-3}Por)$ exhibits the same NIR absorption features as their corresponding reference compounds, namely M₁₋₃. In the visible range, all of the hybrids reveal H₂Porcentered Soret and Q bands at 425 nm and 519, 553, 595, 653 nm, respectively. However, relative to H_2 Por ($\epsilon_{418\,\text{nm}}$ = $490000 \,\mathrm{L\,mol^{-1}\,cm^{-1}}$), the Soret bands of $\mathrm{M_{1-3}Por}$ are broadreduced molar absorptivity $\approx 287500 \, \text{L} \, \text{mol}^{-1} \, \text{cm}^{-1}$), and are red-shifted by 7 nm. Likewise, the Q bands undergo red-shifts that range from 3 to 5 nm. All of these spectral changes suggest appreciable electronic interactions between the two subunits of these covalently linked hybrids in the ground state. As reference, the absorption spectrum (Figure S6)[9] of an equimolar mixture of H₂Por and La@C₈₂ appears as a simple superimposition of the two species, indicating the lack of interaction between the noncovalently linked H₂Por and La@C₈₂.

The EPR spectra of all of the compounds are shown in Figure S7, and the corresponding features are summarized in Table S1. [9] All of the three hybrids display distinct octet EPR signals with characteristic *hfcc* and *g*-factor parameters, reflecting their paramagnetic properties. Importantly, the spectral resemblance between the hybrids and the references constitutes additional evidence for their structural similarity.

Electrochemical studies with M_{1-3} and $M_{1-3}Por$ were carried out in o-dichlorobenzene containing $0.05\,\mathrm{M}$ Bu₄NPF₆ under an argon atmosphere. The corresponding differential pulse voltammograms (DPVs) are depicted in Figures S8–13, [9] and the potentials versus Fc/Fc⁺ are summarized in Table 1. Using H_2Por and M_{1-3} as references assisted in determining the redox properties of $M_{1-3}Por$. In the anodic direction, $M_{1-3}Por$ have four one-electron oxidation steps. The first and fourth steps, between -0.02 and $-0.04\,\mathrm{V}$ and between 1.06 and 1.13 V, were assigned to La@C₈₂ centered processes, while the second and third steps, between 0.57 and


Table 1: Redox potentials of $M_{1-3}Por$ hybrids, M_{1-3} references, and $H_2Por^{[a]}$

	E ₄ ^{ox}	E ₃ ^{ox}	E ₂ ^{ox}	E ₁ ^{ox}	E_1^{red}	$E_2^{\rm red}$	$E_3^{\rm red}$	$E_4^{\rm red}$
H₂Por		1.16	0.94	0.52	-1.75	-2.07		
M_1Por	1.13	0.89	0.58	-0.03	-0.48	-1.41	-1.74	-2.07
M_2Por	1.06	0.89	0.57	-0.04	-0.48	-1.41	-1.75	-2.06
M_3Por	1.08	0.89	0.61	-0.02	-0.45	-1.36	-1.71	-2.07
M_1				0.02	-0.42	-1.37	-1.71	
M_2			1.18	0.02	-0.43	-1.38	-1.71	
M_3				0.01	-0.43	-1.38	-1.74	

[a] Values given versus Fc^+/Fc . DPV measurements in o-DCB solution using $0.05 \,\mathrm{M}$ Bu₄NPF₆ as supporting electrolyte, ferrocene as an internal standard, platinum wires as the working and counter electrodes, and SCE as the reference electrode. Scan rate: $20 \,\mathrm{mV} \,\mathrm{s}^{-1}$.

0.61 V and at 0.89 V, relate to processes involving H₂Por. In the cathodic direction, M₁₋₃Por reveal four reduction steps. The first, second, and fourth steps, between -0.45 and -0.48 V, between -1.36 and -1.41 V, and between -2.06and -2.07 V, correlate to the one-electron reduction of La@C₈₂, La@C₈₂, and H₂Por, respectively. The third step between -1.71 and -1.75 V, which is evidently a two-electron reduction, is expected to involve La@C₈₂ and H₂Por. Notably, the La@C82-centered redox processes, including the first oxidation and first reduction, are cathodically shifted by 30-60 mV and 20–60 mV, respectively, for M_{1–3}Por as compared with those noted for M₁₋₃. In contrast, the H₂Por-centered redox process, that is, the second oxidation of M₁₋₃Por, is shifted anodically by 50-90 mV relative to that of H₂Por. The aforementioned observations lead us to conclude that sizeable interactions prevail between the two subunits in the ground state.

To gain further insights into the molecular and electronic structure of the hybrids, computational studies were performed using density functional methods (DFT) at the M06-2X/3-21G-LanL2DZ level for geometry optimizations and higher levels (that is, M06/and M06-2X/6-31G*-LanL2DZ)^[15] for energy calculations with the Gaussian 09 program. ^[16] The optimized structure of M₃Por with a folded and a stretched conformation is shown in Figure 3. Importantly, the former conformer is 16.3 or 14.5 kcal mol⁻¹ more stable than the latter, suggesting sizable intramolecular attractions. In the folded conformer, the neighboring distance between the two subunits is 2.87 Å, which is shorter than the sum of van der Waals radii. As Figures 4 and S14 reveal, ^[9] the calculated SOMO and LUMO are mainly localized on La@C₈₂, while the

Figure 3. Two optimized conformers of M_3 Por at the M06-2X/3-21G-LanL2DZ level. The folded conformer (left) is 14.5 kcal mol $^{-1}$ more stable than stretched conformer (right) at this level.

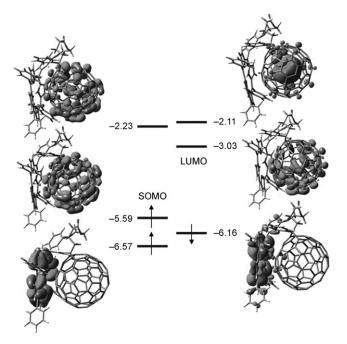


Figure 4. MO diagram of the M₃Por hybrid. Values are given in eV.

HOMO is centered on H_2Por , in close agreement with the results of electrochemical studies. On the other hand, a delocalization of the SOMO on H_2Por and of the $\beta\text{-HOMO}$ on $La@C_{82}~(<2\,\%)$ was observed only for the folded conformer, indicating a distance-dependent interaction between the two components.

Intramolecular interactions in the excited state were probed by means of steady-state fluorescence spectra, which were recorded in an argon-saturated toluene solution. Importantly, as Figures 5 and S15 show, the strong fluorescence of H_2Por with a quantum yield of $0.11^{[17]}$ is subject to a remarkable quenching in $M_{1-3}Por$, with quantum yields of approximately $(2.2 \pm 0.5) \times 10^{-4}$. As a reference experiment, an equimolar mixture of La@C₈₂ and H_2Por at a similar concentration was tested in which fluorescence quenching was almost negligible (Figure S16).^[9] We therefore concluded

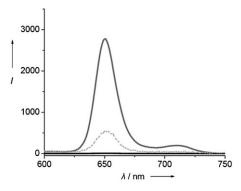


Figure 5. Steady-state fluorescence spectra of M_3 Por (black line) and H_2 Por (dark gray line) in toluene solution, photoexcited at 413 nm after normalization to the absorption intensity (0.34) at the excitation wavelength. The fluorescence intensity of M_3 Por is also shown amplified by a factor of 100 (gray dashed line).

Communications

that the excited state deactivation might proceed by either an intramolecular energy or electron transfer process. The hypothesis of an energy transduction evolving from photoexcited H_2Por to $La@C_{82}$ seems to be more reasonable. In particular, the energy level of the first doublet excited state of $La@C_{82}$ is about 0.88 eV,^[6] which is more than 1.0 eV below the first singlet excited state of H_2Por (1.90 eV) in toluene.^[18] Electron transfer, on the other hand, appears to be thermodynamically less-favored, considering that the energy level of the radical ion pair state, namely $(La@C_{82})^-$ - $(H_2Por)^{\bullet+}$, is 1.05 eV.^[19]

In conclusion, we have presented the synthesis of three isomeric covalently linked porphyrin–La@C₈₂ hybrids (M₁₋₃Por) and their structural characterization. Combined spectroscopy, electrochemistry, and DFT calculations suggest identifiable electronic interactions between the two subunits in the ground state. In the excited state, nearly quantitative quenching of the H₂Por fluorescence suggests that the two chromophores do communicate with each other in the form of an energy/electron transfer event. These covalent hybrids may be useful in future design and creation of EMF-based materials for molecular electronic devices and photovoltaics. More precise characterization of the photophysical properties of these new hybrids will be undertaken in future research.

Experimental Section

Details of the syntheses are given in the Supporting Information. A black single crystal of M₃ was obtained by layering a CS₂ solution with hexane. X-ray data were collected with an AXS SMART APEX machine (Bruker Analytik, Germany) at 120 K. CCDC 807837 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Calculations were carried out using the hybrid density functional theory (DFT) at the M06 and M06-2X levels with the relativistic effective core potential as implemented in the Gaussian 09 software package. [16] The LANL2DZ basis set was employed for La and 3-21G (geometry optimization) and 6-31G* (energy calculation) basis set for C, H, O, and N.

Received: January 18, 2011 Revised: February 24, 2011 Published online: May 12, 2011

Keywords: density functional calculations \cdot fullerenes \cdot lanthanum \cdot π interactions \cdot structure elucidation

- [1] For recent reviews, see: a) M. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910–1921; b) D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2009, 42, 1890–1898; c) J. L. Delgado, P.-A. Bouit, S. Filippone, M. Á. Herranz, N. Martín, Chem. Commun. 2010, 46, 4853–4865.
- [2] Fullerenes: From Synthesis to Optoelectronic Properties (Ed.: D. M. Guldi, N. Martín), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

- [3] a) J. R. Pinzón, M. E. Plonska-Brzezinska, C. M. Cardona, A. J. Athans, S. G. Sankaranarayanan, D. M. Guldi, M. A. Herranz, N. Martin, T. Torres, L. Echegoyen, *Angew. Chem.* 2008, 120, 4241–4244; *Angew. Chem. Int. Ed.* 2008, 47, 4173–4176; b) J. R. Pinzón, et al., *Chem. Eur. J.* 2009, 15, 864–877; c) J. R. Pinzón, D. C. Gasca, S. G. Sankaranarayanan, T. Bottari, D. M. Guldi, L. Echengoyen, *J. Am. Chem. Soc.* 2009, 131, 7727–7734; d) R. B. Ross, et al., *Nat. Mater.* 2009, 8, 208–212.
- [4] a) Y. Takano, Á. Herranz, N. Martín, S. G. Radhakrishnan, D. M. Guldi, T. Tsuchiya, S. Nagase, T. Akasaka, J. Am. Chem. Soc. 2010, 132, 8048 8055; b) D. M. Guldi, et al., J. Am. Chem. Soc. 2010, 132, 9078 9086.
- [5] T. Akasaka, S. Nagase, Endofullerenes: A New Family of Carbon Clusters, Kluwer, Dordrecht, 2002.
- [6] a) M. Fujitsuka, O. Ito, K. Kobayashi, S. Nagase, K. Yamamoto, T. Kato, T. Wakahara, T. Akasaka, *Chem. Lett.* 2000, 902–903;
 b) K. Yanagi, S. Okubo, T. Okazaki, H. Kataura, *Chem. Phys. Lett.* 2007, 435, 306–310.
- [7] a) G. Gil-Ramírez, S. D. Karlen, A. Shundo, K. Porfyrakis, Y. Ito, G. A. D. Briggs, J. J. L. Morton, H. L. Anderson, *Org. Lett.* 2010, 12, 3544–3547; b) G. Pagona, S. P. Economopoulos, T. Aono, Y. Miyata, H. Shinohara, N. Tagmatarchis, *Tetrahedron Lett.* 2010, 51, 5896–5899.
- [8] a) B. Cao, T. Wakahara, Y. Maeda, A. Han, T. Akasaka, T. Kato, K. Kobayashi, S. Nagase, *Chem. Eur. J.* 2004, 10, 716–720; b) M. Yamada, et al., J. Phys. Chem. B 2005, 109, 6049–6051; c) L. Feng, et al., Chem. Eur. J. 2006, 12, 5578–5586; d) Y. Takano, et al., J. Am. Chem. Soc. 2008, 130, 16224–16230.
- [9] See the Supporting Information.
- [10] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532 – 538.
- [11] The arabic numbers (i.e., 1, 2, 3) refer to the isomeric monoadducts of La@C₈₂ in terms of increasing retention time on the HPLC.
- [12] Crystal data for (M_3)·2CS₂: $C_{96}H_{14}LaO_2S_4$, M_r = 1466.22, black chip, $0.39 \times 0.28 \times 0.06$ mm³, monoclinic, space group $P2_1/c$, a = 14.587(2) Å, b = 11.1492(17) Å, c = 32.869(5) Å, β = 98.807(2), V = 5282.7(14) Å³, Z = 4; ρ_{calcd} = 1.844 g cm⁻³, $\mu(Mo_{K\alpha})$ = 1.038 mm⁻¹, θ_{max} = 27.48, T = 120 K, 59 356 total collected reflections, 12 083 unique reflections, 1151 refined parameters, GOF = 1.138, R_1 = 0.1360 and wR_2 = 0.2841 for all data; R_1 = 0.1018 for 8764 independent reflections (I > 2.0 $\sigma(I$)), min./max. electron density 2.787/–2.588 e Å⁻³.
- [13] Y. Matsunaga, Y. Maeda, T. Wakahara, T. Tsuchiya, M. O. Ishitsuka, T. Akasaka, N. Mizorogi, K. Kobayashi, S. Nagase, K. M. Kadish, *ITE Lett.* 2006, 7, 43–49.
- [14] Y. Maeda, et al., J. Am. Chem. Soc. 2004, 126, 6858-6859.
- [15] Compared with the traditional B3LYP functional, the M06 family of functionals has been shown to give more accurate geometries and energies for dispersion-dominated systems, such as benzene aggregates. Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215–241.
- [16] M. J. Frisch et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- [17] D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovetskaya, C. A. Reed, P. D. W. Boyd, *J. Phys. Chem.* 1996, 100, 15926–15932.
- [18] C. Luo, D. M. Guldi, H. Imahori, K. Tamaki, Y. Sakata, J. Am. Chem. Soc. 2000, 122, 6535-6551.
- [19] The energy level of the ion pair was evaluated using the Wellertype approach (see the Supporting Information). D. Rehm, A. Weller, *Isr. J. Chem.* 1970, 7, 259–271.